Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 1174789, 2023.
Article in English | MEDLINE | ID: covidwho-2328012

ABSTRACT

CD24 is a small glycosylphosphatidylinositol (GPI)-anchored glycoprotein with broad expression in multiple cell types. Due to differential glycosylation, cell surface CD24 have been shown to interact with various receptors to mediate multiple physiological functions. Nearly 15 years ago, CD24 was shown to interact with Siglec G/10 to selectively inhibit inflammatory response to tissue injuries. Subsequent studies demonstrate that sialylated CD24 (SialoCD24) is a major endogenous ligand for CD33-family of Siglecs to protect the host against inflammatory and autoimmune diseases, metabolic disorders and most notably respiratory distress in COVID-19. The discoveries on CD24-Siglec interactions propelled active translational research to treat graft-vs-host diseases, cancer, COVID-19 and metabolic disorders. This mini-review provides a succinct summary on biological significance of CD24-Siglec pathway in regulation of inflammatory diseases with emphasis on clinical translation.


Subject(s)
COVID-19 , Graft vs Host Disease , Inflammation , Neoplasms , Humans , CD24 Antigen , Ligands , Sialic Acid Binding Immunoglobulin-like Lectins
2.
Heliyon ; 9(3): e13945, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2274110

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has become one of the most serious public health crises worldwide. Most infected people are asymptomatic but are still able to spread the virus. People with mild or moderate illnesses are likely to recover without hospitalization, while critically ill patients face a higher risk of organ injury or even death. In this study, we aimed to identify a novel biomarker that can predict the severity of COVID-19 patients. Clinical information and RNA-seq data of leukocytes from whole blood samples with and without a COVID-19 diagnosis (n = 100 and 26, respectively) were retrieved from the National Center for Biotechnology Information Gene Expression Omnibus database. Raw data were processed using the Transcripts Per Million (TPM) method and then transformed using log2 (TPM+1) for normalization. The CD24-CSF1R index was established. Violin plots, Kaplan-Meier curves, ROC curves, and multivariate Cox proportional hazards regression analyses were performed to evaluate the prognostic value of the established index. The CD24-CSF1R index was significantly associated with ICU admission (n = 50 ICU, 50 non-ICU) and ventilatory status (n = 42 ventilation, 58 non-ventilation) with p = 4.186e-11 and p = 1.278e-07, respectively. The ROC curve produced a relatively accurate prediction of ICU admission with an AUC of 0.8524. Additionally, patients with a high index had significantly fewer mechanical ventilation-free days than patients with a low index (p = 6.07e-07). Furthermore, the established index showed a strong prognostic ability for the risk of using a ventilator in the multivariate Cox regression model (p < 0.001). The CD24-CSF1R index was significantly associated with COVID-19 severity. The established index could have potential implications for prognosis, disease severity stratification, and clinical management.

3.
Onco Targets Ther ; 15: 1391-1402, 2022.
Article in English | MEDLINE | ID: covidwho-2197694

ABSTRACT

CD24 is a highly glycosylated glycophosphatidylinositol (GPI)-anchored protein that is expressed in many types of differentiating cells and some mature cells of the immune system as well as the central nervous system. CD24 has been extensively used as a biomarker for developing B cells as its expression levels change over the course of B cell development. Functionally, engagement of CD24 induces apoptosis in developing B cells and restricts cell growth in more mature cell types. Interestingly, CD24 is also expressed on many hematological and solid tumors. As such, it has been investigated as a therapeutic target in many solid tumors including ovarian, colorectal, pancreatic, lung and others. Most of the B-cell leukemias and lymphomas studied to date express CD24 but its role as a therapeutic target in these malignancies has, thus far, been understudied. Here, I review what is known about CD24 biology with a focus on B cell development and activation followed by a brief overview of how CD24 is being targeted in solid tumors. This is followed by an assessment of the value of CD24 as a therapeutic target in B cell leukemia and lymphoma in humans, including an evaluation of the challenges in using CD24 as a target considering its pattern of expression on normal cells.

4.
Life (Basel) ; 12(10)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2043845

ABSTRACT

Cluster of differentiation (CD) 24, a long-known protein with multifaceted functions, has gained attention as a possible treatment for Coronavirus Disease 19 (COVID-19) due to its known anti-inflammatory action. Extracellular vesicles (EVs), such as exosomes and microvesicles, may serve as candidate drug delivery platforms for novel therapeutic approaches in COVID-19 and various other diseases due to their unique characteristics. In the current review, we describe the physiology of CD24 and EVs and try to elucidate their role, both independently and as a combination, in COVID-19 therapeutics. CD24 may act as an important immune regulator in diseases with complex physiologies characterized by excessive inflammation. Very recent data outline a possible therapeutic role not only in COVID-19 but also in other similar disease states, e.g., acute respiratory distress syndrome (ARDS) and sepsis where immune dysregulation plays a key pathophysiologic role. On the other hand, CD24, as well as other therapeutic molecules, can be administered with the use of exosomes, exploiting their unique characteristics to create a novel drug delivery platform as outlined in recent clinical efforts. The implications for human therapeutics in general are huge with regard to pharmacodynamics, pharmacokinetics, safety, and efficacy that will be further elucidated in future randomized controlled trials (RCTs).

5.
EMBO Mol Med ; 14(9): e15997, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1918175

ABSTRACT

A small but significant proportion of COVID-19 patients develop life-threatening cytokine storm. We have developed a new anti-inflammatory drug, EXO-CD24, a combination of an immune checkpoint (CD24) and a delivery platform (exosomes). CD24 inhibits the NF-kB pathway and the production of cytokines/chemokines. EXO-CD24 discriminates damage-from pathogen-associated molecular patterns (DAMPs and PAMPs) therefore does not interfere with viral clearance. EXO-CD24 was produced and purified from CD24-expressing 293-TREx™ cells. Exosomes displaying murine CD24 (mCD24) were also created. EXO-CD24/mCD24 were characterized and examined, for safety and efficacy, in vitro and in vivo. In a phase Ib/IIa study, 35 patients with moderate-high severity COVID-19 were recruited and given escalating doses, 108 -1010 , of EXO-CD24 by inhalation, QD, for 5 days. No adverse events related to the drug were observed up to 443-575 days. EXO-CD24 effectively reduced inflammatory markers and cytokine/chemokine, although randomized studies are required. EXO-CD24 may be a treatment strategy to suppress the hyper-inflammatory response in the lungs of COVID-19 patients and further serve as a therapeutic platform for other pulmonary and systemic diseases characterized by cytokine storm.


Subject(s)
COVID-19 Drug Treatment , Exosomes , Animals , CD24 Antigen/metabolism , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Exosomes/metabolism , Humans , Lung , Mice
6.
Biochem Pharmacol ; 195: 114847, 2022 01.
Article in English | MEDLINE | ID: covidwho-1520714

ABSTRACT

The host response to SARS-CoV-2, the virus that causes COVID-19, is highly heterogeneous, ranging from mild/asymptomatic to severe. The moderate to severe forms of COVID-19 often require hospitalization, are associated with a high rate of mortality, and appear to be caused by an inappropriately exaggerated inflammatory response to the virus. Emerging data confirm the involvement of both innate and adaptive immune pathways both in protection from SARS-CoV-2, and in driving the pathology of severe COVID-19. In particular, innate immune cells including neutrophils appear to be key players in the inflammation that causes the vicious cycle of damage and inflammation that underlies the symptomatology of severe COVID-19. Several recent studies support a link between damage and inflammation, with damage-associated molecular patterns (DAMPs) playing a key role in the pathology of severe COVID-19. In this review, we put into perspective the role of DAMPs and of components of the DAMP-signaling cascade, including Siglecs and their cognate ligands CD24 and CD52, in COVID-19. Further, we review clinical data on proposed therapeutics targeting DAMP pathways to treat SARS-CoV-2 infection and the regulation of these signaling cascades in COVID-19. We also discuss the potential impact of DAMP-mediated inflammation in other indications related to COVID-19, such as ARDS, endothelial dysfunction, hypercoagulation, and sepsis.


Subject(s)
Alarmins/metabolism , COVID-19/metabolism , COVID-19/pathology , Inflammation Mediators/metabolism , Inflammation/metabolism , SARS-CoV-2 , Humans , Immunity, Innate , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL